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Complex number:

Complex algebra:

Complex conjugation:
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Functions of a complex variable:

All elementary functions of real variables may be extended into the complex plane. 
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A complex function can be resolved into its real part and imaginary part:
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Multi-valued functions and branch cuts:

ivunirrerez nii   )2(ln]ln[)ln(ln  :1 Example )2( 

To remove the ambiguity, we can limit all phases to (-,).

 = - is the branch cut.

lnz with n = 0 is the principle value.

  2/)2(2121)2(2121 )(  :2 Example  ninii errerez  

We can let z move on 2 Riemann sheets so that                         is single valued everywhere.21)()( irezf 
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Analytic functions: If  f (z) is differentiable at z = z0 and within the neighborhood of 

z=z0,  f (z) is said to be analytic at z = z0. A function that is analytic in the whole 

complex plane is called an entire function.

Cauchy-Riemann conditions for differentiability

Cauchy-Riemann conditions 
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Conversely, if the Cauchy-Riemann conditions are satisfied,  f (z) is differentiable:
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More about Cauchy-Riemann conditions:

1)  It is a very strong restraint to functions of a complex variable.
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Reading: General search for Cauchy-Riemann conditions:

Our Cauchy-Riemann conditions were derived by requiring  f '(z) be the same when z

changes along x or y directions. How about other directions?

Here I do a general search for the conditions of differentiability. 
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Cauchy’s theorem

Cauchy’s integral theorem

Contour integral:

Cauchy’s integral theorem: If f (z) is analytic in a simply connected region R, [and f ′(z) 

is continuous throughout this region, ] then for any closed path C in R, the contour 

integral of f (z) around C is zero:
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Contour deformation theorem:

A contour of a complex integral can be arbitrarily 

deformed through an analytic region without changing 

the integral.

1) It applies to both open and closed contours.

2) One can even split closed contours.

Proof: Deform the contour bit by bit.

Examples:

1) Cauchy’s integral theorem.

(Let the contour shrink to a point.)

2) Cauchy’s integral formula.

(Let the contour shrink to a small 

circle.)

Cauchy-Goursat proof: The continuity of  f '(z) is not 

necessary.

Corollary:  An open contour integral for an analytic

function is independent of the path, if  there is no singular 

points between the paths. 
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Cauchy’s integral formula

Cauchy’s integral formula:

If f (z) is analytic within and on a closed contour C, then for any point z0 within C,
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Derivatives of  f (z): 
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Corollary: If a function is analytic, then its derivatives of all orders exist.

Corollary: If a function is analytic, then it can be expanded in Taylor series.

Cauchy’s inequality: If                           is analytic and bounded, 

then 

n

nzazf )( ,)(
||

Mzf
rz




bounded.) is  is,(That  . n

n

n aMra 

Mra
r

M
dz

z

zf
adz

z

zf

i

n
anf n

nnrz nn
rz nn

n      || 1|| 1

)( )(

2

1)(

2

!
!)0(  :Proof



Liouville’s theorem: If a function is analytic and bounded in the entire complex plane, 

then this function is a constant.

.)(  0.for  0 then  ,let    ,  :Proof 0azfnar
r

M
a nnn 

Fundamental theorem of algebra: has n roots.

Suppose P(z) has no roots, then 1/P(z) is analytic and bounded as               Then P(z) is 

constant. That is nonsense. Therefore P(z) has at least one root we can divide out.

)0,0(  )(
0

 


n

n

i

i

i anzazP

.z



11

Morera’s theorem: If  f (z) is continuous and                        for every closed contour 

within a simply connected region, then  f (z) is analytic in this region.
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Analytic continuation

Laurent expansion

Taylor expansion for functions of a complex variable:

Expanding an analytic function  f (z) about z = z0, where z1 is the nearest singular point.
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Schwarz’s reflection principle:

If  f (z) is 1) analytic over a region including the real axis, and 2) real when z is real, then
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Examples: most of the elementary functions.



Analytic continuation: Suppose  f (z) is analytic around z = z0, we can expand it 

about z = z0 in a Taylor series:

This series converges inside a circle with a radius of

convergence                     , where a0 is the nearest

singularity from z = z0.

We can also expand f (z) about another point z = z1 within

the circle R0:                                           .

In general, the new circle has a radius of convergence and contains points 

not within the first circle.
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Consequences:

1) f (z) can be analytically continued over the complex plane, excluding singularities.

2) If f (z) is analytic, its values at one region determines its values everywhere.
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Laurent expansion

Laurent expansion

Problem: Expanding a function f (z) that is analytic in an annular region (between r and R).
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C is any contour that encloses z0 and lies 

between r and R (deformation theorem).
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Laurent expansion:

1) Singular points of the integrand. 

For n < 0, the singular points are determined by f (z). For n ≥0, the singular 

points are determined by both f (z) and 1/(z'-z0)
n+1.

2) If f (z) is analytic inside C, then the Laurent series reduces to a Taylor series:

3) Although an has a general contour integral form, In most times we need to use 

straight forward complex algebra to find an.
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Laurent expansion: Examples

Example 1: Expand                         about z0=1.
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Example 2: Expand                        about z0=i.

 


















































































)(
84

11

2

)(
2

1

2

11

2

1

2
1

1

2

11

2

1

2

11

2

111

2

1

1

1
)(

0
2

2

iz
i

iz

i

iz
iiizi

i

iziizi

iziiziiziziz
zf

n

n

n

1

1
)(

2 


z
zf



18

Branch points and branch cuts

Singularities

Poles: In a Laurent expansion

then z0 is said to be a pole of order n.

A pole of order 1 is called a simple pole.

A pole of infinite order (when expanded about z0) is called an essential singularity. 

The behavior of a function f (z) at infinity is defined using the behavior of  f (1/t) at t = 0. 

Examples:
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sinz thus has an essential singularity at infinity.
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Branch points and branch cuts:

Branch point: A point z0 around which a function  f (z) is discontinuous after going a 

small circuit. E.g., 

Branch cut:  A curve drawn in the complex plane such that if a path is not allowed  to 

cross this curve, a multi-valued function along the path will be single valued.

Branch cuts are usually taken between pairs of branch points. E.g., for         , the curve 

connects z=1 and z =  can serve as a branch cut.   

.lnfor  0 ,1for  1 00 zzz-z 

1 z-

Examples of branch points and branch cuts:

)sin(cos)(   .1  aiarzzf aa 

If a is a rational number,                then circling the branch point z = 0 q times will bring 

f (z) back to its original value.  This branch point is said to be algebraic, and q is called 

the order of the branch point. 

If a is an irrational number, there will be no number of turns that can bring f (z) back to 

its original value. The branch point is said to be logarithmic. 

,/ qpa 
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)1)(1()(   .2  zzzf

We can choose a branch cut from z = -1 to z = 1 (or any 

curve connecting these two points). The function will be 

single-valued, because both points will be circled.

Alternatively, we can choose a branch cut which 

connects each branch point to infinity. The function will 

be single-valued, because neither points will be circled.

It is notable that these two choices result in different 

functions. E.g., if                  , then  iif 2)( 

choice. second for the

2)( and choicefirst  for the  2)( iifiif 

A
B

A
B
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Mapping

Mapping

Mapping: A complex function                                       

can be thought of as describing a mapping from the 

complex z-plane into the complex w-plane. 

In general, a point in the z-plane is mapped into a 

point in the w-plane. A curve in the z-plane is mapped 

into a curve in the w-plane. An area in the z-plane is 

mapped into an area in the w-plane.
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Inversion:
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In Cartesian coordinates:
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A straight line is mapped into a circle:
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Conformal mapping

Conformal mapping: The function w(z) is said to be conformal at z0 if it preserves the 

angle between any two curves through z0.

If w(z) is analytic and w'(z0)0, then w(z)  is conformal at z0.

Proof: Since w(z) is analytic and w'(z0)0, we can expand w(z) around z = z0 in a 

Taylor series:
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1) At any point where w(z) is conformal, the mapping consists of a rotation and a 

dilation. 

2) The local amount of rotation and dilation varies from point to point. Therefore a 

straight line is usually mapped into a curve.

3) A curvilinear orthogonal coordinate system is mapped to another curvilinear 

orthogonal coordinate system .
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What happens if w'(z0) = 0?

Suppose w (n)(z0) is the first non-vanishing derivative at z0.   
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This means that at z = z0 the angle between any two curves is magnified by a factor n

and then rotated by .


